Tag: Chemical Properties

  • Crystalline Phases Involved in the Hydration of Calcium Silicate‐Based Cements: Semi‐Quantitative Rietveld X‐Ray Diffraction Analysis

    Abstract

    Chemical comparisons of powder and hydrated forms of calcium silicate cements (CSCs) and calculation of alterations in tricalcium silicate (Ca3SiO5) calcium hydroxide (Ca(OH)2) are essential for understanding their hydration processes. This study aimed to evaluate and compare these changes in ProRoot MTA, Biodentine and CEM cement. Powder and hydrated forms of tooth coloured ProRoot MTA, Biodentine and CEM cement were subjected to X-ray diffraction (XRD) analysis with Rietveld refinement to semi-quantitatively identify and quantify the main phases involved in their hydration process. Data were reported descriptively. Reduction in Ca3SiO5 and formation of Ca(OH)2 were seen after the hydration of ProRoot MTA and Biodentine; however, in the case of CEM cement, no reduction of Ca3SiO5 and no formation of Ca(OH)2 were detected. The highest percentages of amorphous phases were seen in Biodentine samples. Ettringite was detected in the hydrated forms of ProRoot MTA and CEM cement but not in Biodentine.

    Keywords: X-Ray Diffraction Analysis, Chemical Properties, Mineral Trioxide Aggregate

  • Effect of Bismuth Oxide on White Mineral Trioxide Aggregate: Chemical Characterization and Physical Properties

    Aim: To assess the effect of bismuth oxide (Bi2O3) on the chemical characterization and physical properties of White mineral trioxide aggregate (MTA) Angelus. Methodology Commercially available White MTA Angelus and White MTA Angelus without Bi2O3 provided by the manufacturer especially for this study were subjected to the following tests: Rietveld X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), compressive strength, Vickers microhardness test and setting time. Chemical analysis data were reported descriptively, and physical properties were expressed as means and standard deviations. Data were analysed using Student’s t-test and Mann–Whitney U test (P = 0.05).

    Results: Calcium silicate peaks were reduced in the diffractograms of both hydrated materials. Bismuth particles were found on the surface of White MTA Angelus, and a greater amount of particles characterized as calcium hydroxide was observed by visual examination on White MTA without Bi2O3. The material without Bi2O3 had the shortest final setting time (38.33 min, P = 0.002), the highest Vickers microhardness mean value (72.35 MPa, P = 0.000) and similar compressive strength results (P = 0.329) when compared with the commercially available White MTA Angelus containing Bi2O3.
    Conclusion: The lack of Bi2O3 was associated with an increase in Vickers microhardness, a reduction in final setting time, absence of Bi2O3 peaks in diffractograms, as well as a large amount of calcium and a morphology characteristic of calcium hydroxide in EDX/SEM analysis.